

Refeshing basics in Networking, IP and routing

Most slides from: KTH Computer Science Course

Thanks to: Olof Hagsand KTH/CSC

The Hourglass Model

- Anything over IP IP over anything
- All applications depend on IP
- IP runs over all networks
- IP is at the heart of all communication

The TCP/IP stack and OSI ref model

Layering in TCP/IP

Layering example

Network

Data Link

Physical

Multiplexing and Demultiplexing

The End2End Argument

A specific application-level function should not be built into the lower levels of the system.

- The functions "in" the Internet are simple and general.
- The bulk of functions are in software at the "edge".
- The complexity of the core network is reduced.
- Generality in the network increases the chances that new applications can be added.

Standards: Organizations

- Internet standard groups
 - ISOC Internet Society
 - IAB Internet Architecture Board
 - IETF Internet Engineering Task Force
 - IANA Internet Assigned Numbers Authority
 - ICANN Internet Corporation for Assigned Names and Numbers
- Related
 - ISO International Standards Organisation
 - IEEE Institute of Electrical and Electronics Engineers
 - ITU-T International Telecommunications Union Telekom sector
 - W3C World-Wide-Web Consortium

- ...

IEEE 802 vs IPv4 addresses

IP-numbers (private)

3. Private Address Space. (RFC1918)

The Internet Assigned Numbers Authority (IANA) has reserved:

```
10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)
```

Used for NAT and experiments

Internal vs external routing

- The Internet is huge
 - Necessary to divide the routing problem into sub-problems.
 - The "Internet" is divided into Autonomous systems (ASs)
 - Each AS is independently managed
- Inter-domain routing / External routing
 - Routing between AS:s
 - Based on commercial agreements Policies, Service-level-agreements
- Intra-domain routing / Internal routing
 - Routing inside an AS
 - An AS may be further divided into areas
 - Best path based on hop metric
- Static vs Dynamic routing

IGP/EGP

EGP

- Exterior Gateway Protocol.
- Runs between networks/domains (inter-domain)
- Examples: BGP, static routing

IGP

- Interior Gateway Protocol.
- Runs within a network/domain (intra-domain)
- Examples: RIP, OSPF, IS-IS.

Popular Unicast Routing Protocols

IP topology example

Routers: Cisco CRS-1

CISCO's current flagship: Carrier- Routing System

3-stage multi-stage switching plane

>50% of cost

Trie prefix lookup

7.5kW

Each slot has 40Gbps

32Tbps raw bandwidth

Distributed RP

Several Logical Routers

Optical_Electric transitions: O-E-O-E-O-E-O

Routers: Juniper

M-series

- Shipping started 1998
- M5, M10, M20, M40e, M160, M320
- 8xOC-192 or 32xOC-48 ports in a M160

T-series

- Shipping started 2002
- T320, T640
- 32xOC-192 or 128xOC-48 ports in a T640

Capacity: 80Gb/s

Routers: Open source

- Linux, BSD platforms
- Most routing protocols exist as open source projects
- But PC HW has traditionally been a limiting factor
- Now quad core CPUs, new buses (PCI express),
 10Gbps NICs enables gigabit forwarding speeds.
- Example: the Bifrost open source router (UU/KTH)

Linear Search on Length Using a Trie

Binary tree

LC-trie routing lookup

- Routings algorithms a high researched area
- LC trie contribution by Stefan Nilsson, Gunnar Karlsson @ KTH

*

- Further refined and first implemented and for Linux kernel
 Robert Olsson, Hans Liss, Jens låås, Uppsala University and Swedish university of agricultural sciences. About 3 man-years and lots of support
 - for Linux Networking Team
- Got Intel Academic Award 2005

What is BGP?

- Border Gateway Protocol version 4
- Defined in RFC 4271
- An inter-domain routing protocol
- Uses the destination-based forwarding paradigm
 - No other relations can be expressed: sources, tos, link load
- Uses path-vector routing
- Views the Internet as a collection autonomous systems
- Exchanges information between peers using TCP as underlying protocol
- Maintains a database (RIBs) of network layer reachability information (NLRI:s)
- Supports a toolkit of mechanisms to express and enforce policies decisions at the AS level

The routing table

- Currently, backbone IP tables are around 300000 entries.
 - The RIB may be much larger
- Virtual private networks (many customer routing tables) the tables are even larger
- Also, a "routing table" is actually many data-structures:
 - Many different protocols
 - Forwarding information base (FIBs)
 - Routing information base (RIBs)

Autonomous Systems (AS)

- A set of routers that has a single routing policy, that run under a single technical administration
 - A single network or group of networks
 - University, business, organization, operator
- This is viewed by the outside world as an Autonomous System
 - All interior policies, protocols, etc are hidden within the AS
- Represented in the Internet by an Autonomous System Number (ASN). 0-65535
 - Example: ASN 1653 for SUNET
 - Note: RFC 4893: BGP Support for Four-octet AS Number Space

Customer / ISP Relations: Stub AS

Announced networks, traffic flows in other direction

- Can use default route to reach the Provider and Internet
- Customer can use address block of provider
- Customer does not need to be a separate AS
- Typically use static routing but can also use BGP
 - Less common. Use a separate IGP (eg RIP) only to exchange routes between border routers.

AS graph and peering relations

Cost and peering relations

Traffic patterns

IP resources

- IP numbers Ipv4 (exhausted when?)
- IP numbers IPv6
- AS-numbers 16 vs 32 bit

LIR, AfriNIC or through provider.

IPv6: What drives deployment?

- Asia and Europe
 - Smaller pools of IPv4 addresses
 - Faster at adopting new technology
 - Government-driven (ASIA)
 - Wireless (3G in Europe)
- U.S.
 - DoD announced that it will move to IPv6 by 2008
 - Public address assignment simplifies end-to-end security
- IPv6 has been added to DNS root servers
- SUNET and NorduNET runs IPv6 in core

IPv6 vs IPv4

- Changes in IPv6 compared to IPv4
 - 128 bit addresses
 - extended address hierarchy
 - simplified header
 - simpler and better support for options
 - possible to extend the protocol
 - support for auto-configuration (plug-and-play)
 - support for QoS treatment
 - host mobility
 - security
 - provider selection
 - no fragmentation in routers

IPv6 Header Format

0	15 16			31	1 4
4-bit Version	8-bit Class	20-bit Flow Label			
16-bit Payload Length			8-bit Next Header	8-bit Hop Limit	
128-bit Source Address					40 bytes
128-bit Destination Address					

- Version Only field identical to IPv4. Code is 6 in IPv6
- Class
 New field. Revised concept of priority bits. Facilitates handling of real-time traffic.
- Flow Label New field. To distinguish packets requiring the same treatment.
- Payload Length Replaces length field in IPv4. Gives length of data following IPv6 header
- **Next Header** Replaces *protocol* field in IPv4. Extension headers can be used.
- Hop Limit Replaces TTL field in IPv4. Hop limit more accurately reflects the use of TTL.
- Src Address Revised source address field. 128 bits in IPv6 vs 32 bits in IPv4.
- **Dst Address** Revised *destination address* field. 128 bits in IPv6 vs 32 bits in IPv4.

What wasn't mentioned

- Different services /etc/services
- ICMP Internet Control Messages Protocol
- ARP
- UDP nor TCP
- NAT
- DNS
- Ipsec, SSL
- Filtering

That's all

Questions?