
Open-source routing at 10Gb/s
Olof Hagsand∗, Robert Olsson† and Bengt Gördén∗,

∗ Royal Institute of Technology (KTH), Sweden
Email: {olofh, gorden}@kth.se

† Uppsala University, Uppsala, Sweden
Email: robert.olsson@its.uu.se

I. A BSTRACT

We present throughput measurements using the
Bifrost Linux open source router on selected PC
hardware. The hardware consists of eight CPU cores,
NUMA architecture, double PCIe buses and Intel and
SUN 10Gb/s interface cards. These cards are equipped
with hardware classifiers that dispatch packets to mul-
tiple DMA queues which enables parallel processing
of packet forwarding and load-balancing between the
multiple CPUs.

In our experiments, we send a multiflow, simplex
packet stream through an open-source router. We mea-
sure the throughput and vary packet size, active CPUs,
and router configuration. In the experiments, we use an
IP flow and packet-length distribution that we claim
is realistic for many network scenarios. Using these
realistic traffic streams, we show how speeds close to
10Gb/s is achievable for normal Internet traffic.

In particular, we show how the use of multiple CPUs
increases the throughput up to a breakpoint which in
our setting is at four CPUs. Further, we show that
adding filters and full BGP tables have minor effects
in the performance.

With these results, we claim that open source routers
using new PC architectures are a viable option for use
in 10Gb/s networks for many network scenarios.

II. I NTRODUCTION

Although the first IP routers were software-based,
the forwarding in modern commercial routers are pri-
marily hardware-based, containing applications spe-
cific circuits (ASICs), high performance switching
backplanes(e.g. cross-bars) and advanced memory sys-
tems (including TCAMs). This enables current routers
to perform wire-speed routing up to Terabit speeds.
The commercial high-end routers of today have little
in common with a standard desktop.

However, the complexity of the forwarding and
routing protocols have increased resulting in more
hardware, and more complex software modules, up to
a point where hardware cost, power consumption and
protocol complexity are important limiting factors of
network deployment.

Simultaneously, development of routers on general-
purpose computer platforms (such as PC’s) has de-
veloped. In particular, general purpose hardware com-

bined with open-source [8], [7], [6] have the advan-
tages of offering a low-cost and flexible solution that is
tractable for several niches of networking deployment.
Such a platform is inexpensive since it uses off-the-
shelf commodity hardware, and flexible in the sense of
its openness of the source software and a potentially
large development community.

However, many previous efforts have been hindered
by performance requirements. While it has been pos-
sible to deploy open source routers as packet filterers
on medium-bandwidth networks it has been difficult to
connect them to high-bandwidth uplinks.

In particular, the 1Gbps PCI bus used to be a limiting
factor during several years but with the advent of PCI
Express, the performance has been increased by the
use of parallell lanes and a new generation in bus
technology with respect to DMA and bus arbitration.
One important advantage with PCIe is that interrupts
are transferred in-line instead of out-of-band using
MSI, which enables a better handling since it allows
for multiple queueable interrupts.

Memory cache behaviour is also important and is
a crucial issue with the introduction of multi-core
architectures. With the advances of efficient forwarding
algorithms [3] and small memory footprints [4], IPv4
forwarding itself is seldom a limiting factor.

We believe that several current trends combined
actually speaks for a renewed attempt of using general-
purpose hardware, and we have shown an approach
that we think has a potential for success in using on
a larger scale in new application areas. In particular,
with 10GE speed and low cost we believe that open
source routers can be used by enterprises, small ISPs,
and other scenarios where cost-efficiency and clean
network design are important. But maybe the most
important issue is the ability to participate in the
development of new services, which can increase the
knowledge and may give competitive advantages.

In previous work [1], we showed how multi-core
CPU architectures with NUMA architecture and paral-
lell PCIe buses combined with 10G Ethernet interface
cards with classifiers and multiple interrupt and DMA
channels could be used to speed up the packet for-
warding of a Linux-based router. We identified several
bottlenecks that had to do with locking mechanisms
in different parts of the code that caused cache-
misses. This was particulalry evident in the so-called

Figure 1. Simplified block structure of the Tyan 2927 board with
two AMD 2382 CPUs and a single PCIe bus.

“qdisc” part of the kernel code, where output queueing
was managed. During the last year, many of these
bottlenecks have been removed in the Linux kernel,
thus paving the way for full usage of the parallellism
provided by the new hardware.

III. E XPERIMENTAL PLATFORM AND SETUP

The experiments us a prerelease of Bifrost [6] 6.0
based on Linux kernel 2.6.29-rc2 64-bit with NUMA
support. Bifrost is a Linux release aimed at providing
an open source routing and packet filtering platform.
Bifrost includes routing daemons, packet filtering,
packet generators, etc.

The Linux kernel had the LC-trie forwarding en-
gine [3], and traffic was generated using a modified
version of pktgen [2], a Linux packet generator.

The motherboard is a TYAN Thunder 2927 with two
Quad-Core AMD Opteron(tm) Processor 2382 with 2.6
GHz, 8 CPUs in total, see Figure 1. The eight CPUs are
arranged in two quad-cores, each having access to local
memory, thus forming a simple NUMA architecture.
Internal buses are HyperTransport (HT).

We used two network interface cards:

• Intel ixgbe. A 10 Gigabit XF SR Dual Port
Server Adapter PCI Express x8 lanes based on the
82598 chipset with multiple interrupt and DMA
channels. The cards have multiple RX and TX
queues. In our experiments we use both two dual
and single NICs. The kernel driver is ixgbe. The
card unfortunately has fixed opto-modules.

• SUN niu. Sun Neptune is a dual 10 Gbit/s, PCIe
x8-based network card. The NIC has 8 receive
and 12 transmit DMA channels per port. The
board supports different physical connections via
XFP modules and can do programmable receive
packet classification in hardware using TCAMs.

Figure 2. Experimental setups for forwarding. Traffic was gener-
ated, forwarded and terminated using three computers.

The Linux driver is niu, named after the board
(Network Interface Unit). The niu driver has ad-
dtional patches to improve multi- queue handling

Both network interface cards have a hardware clas-
sifier that computes a hash-value of the packet header.
The hash-value is then used to select receive queue,
and thus selects which CPU receives the packet. Load-
balancing between CPUs therefore require the traffic
header to consist of several flows, enough to make
the hash-function evenly distribute the traffic over the
different CPUs.

The SUN niu card also has a TCAM classifier for
more finer-grained classification, but it was not used
in these experiments.

IV. D ESCRIPTION OF EXPERIMENTS

Three experiments were made where in each exper-
iment throughput was measured as packets per second
(pps) and bits per second (bps). The first measure is
an indication of per-packet performance and usually
reveals latencies and bottlenecks in CPU and software,
while the second is often associated with limits in bus
and memory bandwidth.

1) Throughput vs packet length: Packet lengths var-
ied between 64 and 1500 bytes.

2) Throughput vs number of CPU cores: The num-
ber of CPU cores varied between 1 and 8.

3) Throughput vs functionality: Router functionality
varied in terms of filtering and routing table size.

The experiments were used the setup shown in
Figure 2. Traffic was sent from the generator via the
router to the sink device. The tested device was the
experimental platform described in Section III, the test
generator and sink device being similar systems.

In all cases, pktgen was used to generate traffic, and
interface counters were used to verify their reception.
On the sink device, received packets were only regis-
tered by the receiving port and not actually transferred
over the bus to main memory. On this particular NIC,
interface counters could still be read after configuring
the interface as down.

A reference measurement was made with an IXIA
traffic analysator which showed that our figures are
within 5% of the IXIA measurements. A weakness of
our setup is that the traffic generator can not generated
mixed flow traffic in a rate higher than 2.5 Mpps. This
means that the generator is saturated at this point, and
that also the router forwarding is limited at this level.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

C
u
m

u
la

tiv
e
 f
ra

ct
io

n
 [
%

]

Packet size [bytes]

Experiment
Caida

Chalmers student network
Uppsala university uplink

Figure 3. Packet length distribution

Packet length[bytes]Distribution

64 45%

576 25%

1500 30%

Table I
PACKET LENGTH DISTRIBUTION USED.

However, separate tests with an IXIA, not presented
here, show that the router can forward packets up to
3.4Mpps, which means that the router under-performs
in these experiements, at least for small packet sizes.

A. Traffic distribution

All traffic used an even random distribution of
destination IPv4 addresses in the11/8 range. There
were 8000 such flows at one given time, and every
flow had a duration of 30 packets. The flows were
scheduled using a round-robin scheduler. This resulted
in ca 31K new flows per second.

The linux forwarding cache performs well as long
as a limited set of new flows arrive per second. The
31K new flows per second corresponds to a destination
cache miss rate of around 5%.

There were two packet length distributions:
1) Fixed. In experiment 1, the packet length was

varied between 64 and 1500 bytes.
2) Mixed. In experiments 2 and 3, a packet length

distribution shown in Table I was used. Figure 3
compares this distribution with three realistic
distributions: the WIDE MAWI transpacific link
in march 2008 [9], one taken from the Chalmers
student network in December 2008 [10] and one
from the Uppsala university uplink router [11].

B. Router functionality

There were four router functionality configurations:
1) Basic. A small routing routing table and no

modules loaded.
2) The Netfilter module was loaded, but without

performing actual filtering.

 0

 0.5

 1

 1.5

 2

 2.5

 100 1000

P
ac

ke
ts

[M
p/

s]

Packet length[bytes]

Sun niu
Intel ixgbe

Figure 4. Throughput in million packets per second as a function
of packet length in bytes. Note that the x-axis is logarithmic.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 1000

B
an

dw
id

th
[G

b/
s]

Packet length[bytes]

Sun niu
Intel ixgbe

Figure 5. Throughput bandwidth in Gb/s as a function of packet
length. The x-axis is logarithmic.

3) Netfilter andconnection trackingmodule loaded
4) Netfilter was loaded andfull BGP table (280

thousand routes).

V. RESULTS

A. Experiment 1: Throughput vs packet length

In the first experiment, the traffic flow mix was sent
from the source, via the router and received by the
sink. The router had basic functionality and used all
eight CPUs. The packet length was varied between 64
and 1500 bytes.

The results are shown in Figures 4 and 5. It can
be seen that a maximum packet rate of 2.5 Mb/s is
achieved at low packet rates. It can also be seen that
the router shows close to wire-speed performance at
large packet lengths.

The figures also show that in these experiments, the
Sun niu card performs better than the Intel ixgbe.

Unfortunately, due to the limitation of the source,
rates higher than 2.5Mpps can not be generated, the
limitations shown in the figures for small packets are
therefore probably a limitation of the sender, not the
router itself.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

P
ac

ke
ts

[M
p/

s]

Number of CPU cores

Sun niu
Intel ixgbe

Figure 6. Throughput in million packets per second as a function
of active CPUs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

B
an

dw
id

th
[G

b/
s]

Number of CPU cores

Sun niu
Intel ixgbe

Figure 7. Throughput bandwidth in Gb/s as a function of number
of active CPUs

B. Experiment 2: Throughput vs number of CPU cores

In the second experiment, the traffic flow mix was
sent using the packet length distribution as shown in
Table I. The funtionality of the router was basic, but
the number of CPU cores varied. The results are shown
in Figures 6 and 7.

It can be seen that the performance starts at ap-
proximate 5Gb/s and then increases to a point at
around 3-4 CPUs where the performance levels off at
around 9 Gb/s. One could see this as an indication
of detoriating utilization of the CPUs. However, this
probably depends on the traffic mix and the results
may change with changing traffic distribution.

There is also a question on what hinders the last gap
to 10Gb/s wirespeed. This is an important question
that requires further study. Preliminary tests with an
IXIA packet generator indicates that here again the
traffic generator may underperform. It may also be that
packets are lost in transit, also at lower utilization, a
fact which would be a negative result.

It should be noted that at this traffic distribution, the
Intel ixgbe performs better than the SUN niu.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4

P
ac

ke
ts

[M
p/

s]

Functionality

Sun niu
Intel ixgbe

Figure 8. Throughput in million packets per second with different
routing configurations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4

B
an

dw
id

th
[G

b/
s]

Functionality

Sun niu
Intel ixgbe

Figure 9. Throughput bandwidth in Gb/s with different routing
configurations as specified in Section IV-B.

C. Experiment 3: Throughput vs functionality

In the third experiment, the functionalityof the router
was varied. The netfilter and connection tracking mod-
ules were loaded and a full BGP routing table was
loaded with 280 thousand routes. The results are shown
in Figures 8 and 9.

It can be seen that the performance is reduced
somewhat, the results indicate that the performance is
maintained, also in the presence of large routing tables
and filter modules. The SUN and Intel cards behave
somewhat differently, it seems that the ixgbe card, for
example, is affected more when loading the modules.

VI. CONCLUSIONS

There is no doubt that open source routing has
entered the 10Gb/s arena. Network interface cards,
CPUs and buses can do 10Gb/s with relatively small
packet sizes. Forwarding is possible at 10G/s speed
with large packets and very close to 10G/s with packet
distributions that is close to what is seen on many
Internet links.

In particular, our results show realistic Internet traf-
fic being forwarded in close to wirespeed by load-
balancing the traffic over multiple CPU cores. New

advances in network interface cards, multi-queue tech-
nology, multi-core CPUs and high-speed buses com-
bined with new software has made this development
possible. Software advances include parallelizing of the
forwarding code for use in multi-core CPUs, as well
as support for interrupt affinity and queue handling.

When obtaining such results, it is important to tune
software, configuring interrupt affinity to avoid cache
misses and allocating DMA channels adequately. It is
also important to carefully select CPU cores, interface
NICs, memory and buses to obtain a system with
suitable performance. A large issue has to do with
avoiding cache misses by constructing highly local
code that is independent of shared data structures.

During the process of this project, the Linux kernel
has improved its performance with respect to paral-
lelized forwarding quite drastically, both in general
forwarding as well as driver specific code. This effort
has been made by the Linux community as a whole,
where we have contributed partly by code patches,
partly by measurements and profiling of the source
code.

In particular, support for the new multiqueue capable
cards have been implemented in the Linux networking
stack. We are now at a point where additional CPUs
visibly improves performance, which is a new property
of forwarding since additional CPUs used to result in
decreased network performance.

This is a continuing process, with hardware ven-
dours constantly developing new and more efficient
classifiers. With this paper we also see new challenges,
including closing the last 10% gap between the mea-
sured 9 Gb/s and full wirespeed forwarding. With more
detailed experiments, we plan to identify the reasons
for this and try to remove them if possible.

We also hope that the performance breakpoint that
we identified at four CPU cores can be raised, maybe
by allocatating cores in a more fine-grained manner,
so that, for example, a subset of CPU cores can be
allocated for traffic in one direction, and another subset
of CPUs in another.

A key issue to achieve high performance is how
to distribute input load over several memories and
CPU cores. The cards used in this paper implements
the Receiver Side Scaling proposal [5] where input
is distributed via separate DMA channels to different
memories and CPU cores using hashing of the packet
headers. This provides basic support for virtualization
but is also essential for forwarding performance since
it provides a mechanism to parallelize the packet
processing.

With more powerful hardware classification, it is
possible to go a step further in functionality and
performance by off-loading parts of the forwarding
decisions to hardware. Some cards provide more pow-
erful classification mechanisms, such as the TCAM on
the SUN niu. This shows an interesting path for future
work, and we plan to continue our work by looking at

classification using such more powerful classification
devices, in particular how the Linux kernel and its
associated software can benefit from such usage. By
using a TCAM, packets can be dropped or tagged
by hardware thus enabling wire-speed filtering and
prioritization, for example.

A specific point is how to best serialise several trans-
mit queues while causing minimal lock contention,
cache misses and packet reordering. The receiver side
is relatively simple in this respect as the classifier splits
the incoming traffic. The transmit side is by design a
congestion point since the packets comes from several
interfaces that may potentially cause blocking.

Acknowledgements

This paper is a result of a study sponsored by IIS.
Interface boards were provided by Intel and SUN,
CPUs by AMD. Uppsala university and KTH for
providing experimental networking infrastructures.

REFERENCES

[1] O Hagsand, R.Olsson., B. GordenTowards 10Gb/s open source
routing. In Proceedings of the Linux Symposium, Hamburg,
October, 2008

[2] R.Olsson.Pktgen the linux packet generator. In Proceedings of
the Linux Symposium, Ottawa, Canada, volume 2, pages 11 -
24, 2005.

[3] S. Nilsson, and G. Karlsson,Fast address look-up for Internet
routers, In Proc. IFIP 4th International Conference on Broad-
band Communications, pp. 11-22, 1998.

[4] M. Degermark et al., "Small Forwarding Tables for Fast
Routing Lookups". in Proc.ACM SIGCOMM Conference’97,
pages 3-14, Oct. 1997

[5] Microsoft Corporation, "Scalable Networking: Eliminating the
Receive Processing Bottleneck-Introducing RSS", WinHEC
2004 Version - April 14, 2004

[6] R. Olsson, H. Wassen, E. Pedersen, "Open Source Routing in
High-Speed Production Use", Linux Kongress, October 2008.

[7] Kunihiro Ishiguro, et al, "Quagga, A routing software package
for TCP/IP networks", July 2006

[8] M. Handley, E. Kohler, A. Ghosh, O. Hodson, P. Radoslavov,
"Designing Extensible IP Router Software", in Proc of the
2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI) 2005.

[9] , "Packet size distribution comparison between
Internet links in 1998 and 2008: WIDE
MAWI", http://www.caida.org/research/traffic-
analysis/pkt_size_distribution/graphs.xml, Caida, 2008.

[10] Milnert, "Packet size distribution in Chalmers student net-
work", Bifrost mailing list, Dec, 2008.

[11] Pedersen, "Packet size distribution of Uppsala university up-
link", Bifrost mailing list, Dec, 2008.

